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On the dynamics of unsteady gravity waves of 
M t e  amplitude 

Part 2. Local properties of a random wave field 

By 0. M. PHILLIPS 
Mechanics Department, The Johns Hopkina University, Baltimore, Maryland* 

(Received 18 January 1981) 

Expressions in closed form are derived for a number of local properties of a 
random, irrohtional wave field. They are: (i) the mean potential and kinetic 
energies per unit projected area; (ii) the energy balance among the processes of 
energy input from the surface pressure fluctuations, rate of growth of potential 
and kinetic energy and horizontal energy flux; and (iii) the partition between 
potential and kinetic energy. These expressions are mainly in terms of quantities 
meaaured at the free swfhce, which are therefore functions of only two spatial 
variables (2, y) and of time t .  

Approximations for these expressions can be found simply by subsequent 
expansion methods; the fourth order being the highest for which the assump- 
tion of irrotational motion is appropriate in a real fluid. It is shown that the 
mean product of any three h t -o rde r  quantities is of fourth or higher order in 
the root-mean-square wave slope, and this result is applied in estimating the 
magnitude of some higher order effects. In  particular, the skewness of the surface 
displacement is of the order of the root-mean-square surface slope, which haa 
been confirmed observationally by Kinsman (1960). 

1. Introduction 
This paper is concerned with the specification of properties of a random wave 

field of finite amplitude that are associated with a single point in the horizontal 
plane, and with the interrelations among them. The problem of the dynamic81 
interactions among the various wave components is a complex one; the object 
of this paper is to derive a number of simple basic expressions and results from 
which a more detailed analysis can be developed. The usual method of approach 
to such problems involves ab initio an expansion about the equilibrium free 
surf- and an investigation of successively higher order terms. This was the 
technique used in Part 1 of this sequence (Phillips 1960a), concerned with the 
elementary wave interactions, where it waa shown that continuing energy trans- 
fer from one Fourier component of the wave field to another waa possible through 
a certain type of resonant third-order interaction. As the order of the approxi- 
mation increases, however, so does the algebraic complexity-very rapidly 
indeed-eo that it is very desirable to carry the analysis in closed form as far 88 
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pwible. This is accomplished in the present paper by expressing propertiea of 
the three-dimensional wave motion in terms of quantities meaaured on the free 
surface at a fixed horizontal location, which are functions of only two spatial 
variables (z,y) and of time. Typical quantities of this kind we the surface die- 
placement fJz, y, t )  itself, and, say, the velocity potential at the free surface 

Clearly, the specification of quantities in this way differs &om both an Eule& 
and a Lagrangian description, since the horizontal co-ordinates are fixed but 
the vertical co-ordinate moves up and down with the free surface. 

A number of expressions of a type somewhat similar to those derived in t b  
paper have been given by Starr (1947). He considered periodic or solitary wavw 
and was concerned with finding relations among the wave energy, phase velocity, 
wave momentum, etc. These relations, however, cannot be generalized to the 
w e  of a random wave field, nor are Starr’s methods capable of treating the 
multi-point properties that occur in the full dynamical problem. 

The technique to be developed here results in higher order effects (i.e. those 
that do not appear in the infinitesimal wave theory) presenting themselves 
frequently as mean products of three or more first-order quantities. To obtain 
a h t  approximation for these higher-order effects, only the infinitesimal wave 
solution is required, and a considerable gain in simplicity is achieved. An 
elementary application of thie technique wm made in a recent paper (Phillip 
1960b) where the drift velocity and mean surface velocity in an irrotational wave 
field were found very readily. In  cases where these effects are represented by 
the mean product of three first-order terms, the theorem derived in $ 6  show 
that they are quite generally of the fourth order, not the third as might at ilmt 
appear. This theorem is used to estimate the orders of magnitude of the skewnem 
of the surface displacement and of the difference between the kinetic and 
potential energies per unit area of the wave field. 

Although the results given by this approach are in closed form and ‘exact’ 
within the context of potential theory, it is well known (Longuet-Higgine 
1953) that in a real fluid, the motion is not truly irrotational. A mean vorticity 
field, of second order, diffuses inwards from the free surface (and also perhaps 
from the bottom), ultimately affecting the whole fluid. This results in, for example, 
a m w  transport velocity in a two-dimensional motion that is different from the 
vdue found by Stokes for potential motion, even when the fluid viscosity is 
vanishingly small. Also, in oceanographical contexts where the water motion is 
three-dimensiond, one must expect the vorticity field to become distorted or 
convoluted, resulting in a turbulent motion that is maintained by the rate of 
strain associated with the wave field. This turbulent layer near the surface has 
been shown (Phillips 1961) to influence the momentum equation for potential 
motion at the third order, and results in a slow attenuation of the waves. In  the 
energy equation ( d i ~ ~ ~ s s e d  in some detail in $ 3), which is formed by multiplying 
the momentum equation by the h t -order  surface velocity (, the influence is 
thus of the fourth order. As a consequence, the exactness implied by the closed 
form of the expressions given below is partly illusory, and the energy relations 
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cannot be expected to be physically reliable beyond the fourth order. However, 
their concise form makes them convenient for subsequent approximation to 
this order. 

2. The basic equations for finite amplitude irrotational waves 
Consider a field of gravity waves on the surface of an incompressible liquid in 

which the depth is large compared with any wavelengths invo1ved.i It will be 
supposed that the motion is irrotational, keeping in mind the conclusions of 
the previous section. A Cartesian reference frame will be used, with the z-axis 
vertically upwards and the plane z = 0 corresponding to the equilibrium free 
surface. Let q represent the velocity of the fluid at an interior point x = (z, y, z )  
so that 

and 

The pressure at any point in the fluid is given by Bernoulli’s equation 

If surface tension is neglected, the pressure is continuous across the free surface 
z = E(s, y, t), so that from equation (2.2) we obtain the dynamical surface boun- 
dary condition 

-2 = (g) +hi+g(,  
P 5 

where p(z ,  y, t) now represents the departure of the atmospheric surface pressure 
from ita mean value, p the water density and the subscript E; indicates that a 
quantity is to be measured at the free surface. There is, in addition, a kinematical 
boundary condition 

= at + (V#), . vg, 

where, here and for the remainder of this paper the two-dimensional operator 
V = (a/az,a/ay). If u = V#, the horizontal (vectorial) component of the fluid 
velocity q and w = a#/az, the vertical component of q, equation (2.4) can be 
expressed ~ F J  

WE = 6+ug.vg. (2.5) 

Two further differential relations will be used frequently in the following 
analysis. If 

t Ceees of Gnite (even variable) depth can be considered formally in a manner eimiler 
to that given here, but the influence of the vorticity field may be more aerious. 

10 Fluid Meoh. 11 
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represents some function measured at the free surface, then by the rulea of 
Dartial differentiation. 

Clearly, the operations ( )[ and differentiation do not commute; a little care is 
sometimes necesscbry aa a result. Important special cams of (2.7) are given when 
f = 4, the velocity potentid 

(2.8) 

(2.9) 

I a 

vat) = U[+W[Vt. 

WE = 5+li[.vt+v.(&lE), 

$ p E )  =&+WE& 

Also, by differentiation of (2.6),  we have, with the aid of (2.7), 

concerning the acceleration of the free surface. 

3. Single point analysis-energy relations 
(i) Potential and kinetic energy densities 

The potential energy per unit horizontal area, taking aa a datum the equilibrium 

(3.1) 
plane z = 0, is simply r= +psE2, 

and the mean potential energy per unit projected area, or the potential energy 

v = h P ,  ( 3 4  
density, is 

where the bar denotes a probability or ensemble average. If the wave field is 
statistically stationary in time (as, for example, when a steady wind blows for 
a long time over a finite fetch) thia average is equal to the usual time average. 
Similarly, if the wave field is spatially homogeneous, the probability average 
is equal to the space average. The expreseion (3.2) is valid quite generally, with 
the appropriate interpretation of the averaging process. 

The kinetic energy of the wave motion per unit projected area is given by 

E 
9- = p a z .  

- m  

From (3.3), 

(3.3) 

SinCe 
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in virtue of (2.5). The mean kinetic energy density of the wave field is thus 

If the wave field is spatially homogeneous, the mean value of the integral is 
independent of position, and the previous expression becomes 

Theee expressions can be obtained alternatively by using the relation 

where the integral is over the surface of a vertical prism of unit cross-sectional 
area terminating at the moving free surface z = ((z, y ,  t ) .  

(ii) Rate of change of kinetic energy density 

The time rate of change of the mean kinetic energy per unit projected area can 
be expressed in a number of alternative and equivalent ways. One such form is 
obtained as follows: 

2w a 

= &+2$’ q.Qdz .  
- -m 

E 

(3.7) 

If the wave field is spatially homogeneous, the average of equation (3.9) yields 

= P i q h G i ,  (3.10) 
10-2 
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since the mean of the integral is independent of position (2, y), whereaa for a field 
statistically steady in time, = 0 and 

(3.11) 

These particular forms lead to simple physical interpretations that are of 
some interest. Equation (3.10), say, gives the mean rate of change of the kinetic 
energy in a column of fluid of unit cross-sectional area aa the sum of two terms. 
The first arises from the rate of change of q2 in the column and the second from 
the rate of change of length (and so m w )  of the column. These are exactly equi- 
valent to the two terms arising in 

The integral in equation (3.9) can be shown to represent the negative flux of 
energy per unit horizontal length, or minus the energy flux across a vertical 
surface of unit width and infinite depth. To demonstrate this, we must add the 
rate of working by pressure forces across this surface to the rate of convection 
of kinetic energy across the surface by the motion. Consider, then, a vertical 
strip cutting the equilibrium free surface in the line element ds. The difference 
between the pressure at any point and the undisturbed hydrostatic pressure ia 
( p  +pgz), so that the rate at which work is done by pressure forces acting acrosa 
the strip is & 

a s . / - -  (P+PP)UdZ.  

ds./-w*pq'Udz. 5 

The rate a t  which kinetic energy is convected across the strip is 

The total flux energy across the strip is thus 

6 
(p+*pq2+pgz)udz = - a s .  p-udz, 

/:m :: 
from Bernoulli's equation (2.2). The instantaneous energy flux vector is thus 

J - m  

____ and the mean energy flux is 

F = -  

(3.12) 

(3.13) 

It appears, then, that the left-hand side of equation (3.11) can be interpreted 
aa the horizontal divergence of the mean energy-flux vector F. A more general 
expression, valid for a non-stationary, non-homogeneous wave field is obtained 
by taking the probability average of equation (3.9), 

(3.14) 
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An alternative expression for !i!" can be found by returning to (3.7) and (3.8). 

149 

= &(W( - I+. v€J + v . 
The use of (2.9) immediately, and then of (2.8) and (2.5) leads to 

which, after addition of itq;, represents p-l.T, aa (3.7) indicates. In  a homo- 
geneous wave field, the mean value of this expression simplifies since both of the 
divergence terms vanish, and we find that 

Adding this result to the expression (3.10)) previously obtained, we have 

(3.16) 

which, as the reader may verify, can be obtained more readily by direct differ- 
entiation of (3.6). 

(iii) The energy balance 

If we multiply the dynamic free surface condition (2.3) by { and take the pro- 
bability average of the result, we obtain 

-6t- = P i g  + iP@ + p g z ,  (3.17) 

which can be interpreted aa the equation for the mean energy balance for a field 
of gravity waves without restriction to stationarity in time or homogeneity in 
space. The term -2 represents the rate at which energy is supplied to the 
waves per unit projected area by the atmospheric pressure fluctuations. The first 
and second terms on the right-hand side together represent, from equation (3.14)) 
!i' + V . F, the rate of change of the mean kinetic energy per unit projected area 
plus the horizontal divergence of the mean energy flux vector. The last term 
clearly represents P, the rate of change of mean potential energy per unit 
projected area. Equation (3.17) can therefore be written 

-& = P +  P+V.F. (3.18) 

If the wave field is homogeneous, F is constant, 

-2 = P+ P, 
and if it is statistically steady - 

- p t  = V.F.  

(3.19) 

(3.20) 
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(iv) Energy partitions in a homogeneous wave field 
In  a homogeneous wave field of infinitesimal amplitude, the total energy per 
unit projected area is divided equally between potential and kinetic energy. 
For finite amplitude wavm, this is in general not so, though the difference is 
small. The determination of T - V has certain intrinsic interest [Strtrr (1947) 
and Mack (1958) having considered certain special cwes], but our object here 
is simply to devise a method of eliminating the kinetic energy density from our 
dynamical considerations. 

The required expression is obtained by multiplying the dynamicctl surface 
boundary condition (2.3) by the surface displacement E(z, y ,  t ) :  

Rearranging the terms and averaging the whole equation, we find that, for a 
homogeneous wave field, 

(3.21) 
a 

= T + 3P E&t- k;) - 3z- 3P g (GQ. 

Under most physical circumstances, the last two terms can be neglected. The 
term +?rgis clearly the contribution to V from the air pressure fluctuations acting 
hydrostatically. Some recent unpublished observations by Dr M. S. Longuet- 
Higgins indicate that ($)* is of order pas@?)* under typical sea conditions, where 
pa is the air density. The ratio of this term to V is then of order p,/p, - 10-9, 
which we mn neglect. The ratio of the last term to the kinetic energy term T is 
of order 716 where 7 is a characteristic wave period and 6 the time scale of growth 
of the wave field w a whole. Recent observational evidence indicates that this 
ratio is of order for the shorter components of a wind-generated wave field 
(those which travel at a phase speed less than half the speed of the wind) and may 
be aa small as for the longer components. It appears then that the energy 
partition can be expressed to sufficient accuracy aa 

(3.22) 

With this expression, the kinetic energy density can be eliminated from the 
energy balance in a homogeneous wave field, yielding 

(3.23) 

This equation gives the rate of growth of the potential energy density (the most 
accessible physical observable) directly in terms of the rate of energy supply 
and the s m d  'unbalance' term. 
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Another type of energy partition is perhaps worth noting in passing. In  a 

u 2 = d =  hi, (3.24) 

so that the kinetic energy per unit maas at such points is divided equally between 
the horizontal and vertical motions. This result was proved (Phillips 1955) in 
8 rather different, but equivalent context. 

homogeneous wave field, for any fixed point always below the water surface, 
- -  

4. The energy-flux vector 
As an illustration of the use of these expressions in finding lowest-order 

approximations, let us relate the energy-flux vector F to the spectrum of sur- 
face displacements (or the potential energy spectrum, which differs only by the 
factor ips). 

The surface displacement [(x,t) can be represented quite generally by the 
generalized Fourier transform 

(4.1) 

where the integrations range over the entire wave-number plane and over all 
valuesof frequency n. A clear and concise account of the modern theory of general- 
ized Fourier transforms is given by Lighthill (1958). In  free infinitesimal wave 
theory, the generalized Fourier transform B(k,n) can be shown simply to be 
of the form 

where 6 represents the Dirac delta. function, w = (gk)i and we have adopted the 
convention that the direction of propagation of a wave is in the direction of k.  
The expression (4.2) is simply a statement of the fact that, in infinitesimal wave 
theory, a wave-number k has associated with it a unique frequency w .  

To the first order, then, the surf- displacement is given from (4.1) and 

E(x, t )  = / / B(k, n)  efQ*x-nl)dk&n, 
k n  

B(k,n) = A(k)6(n-w),  (4.2) 

(4.3) 

l(x,t) = lkA(k)ei(k*x-d)dk 
(4.2) by 

since 
The associated velocity potential, correct to first order, is given by 

is real, where the asterisk represents the complex conjugate quantity. 

The relation between the surface displacement spectrum @(k)  and the surface 
displacement covariance 

Z(x,r; t , 7 )  = [(x,t)c(x+r,t+7) (4.5) 

is constructed by multiplying (4.3) by acorrespondingexpreasionfor E(x + r, t + 7) .  

If the wave field approximates sufficiently to stationarity and homogeneity, 
we have from the theory of generalized functions 

X*m(E) = @ ( k ) 6 ( k - k ) ,  (4.6) 
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where 6(k- k') represents the product of the Dirac delta functions involving 
the two components of the vector argument. Thus 

Z(r, 7) = @(k) e*(k.rw)dk. (4.7) 
k 

In  particular, when the time interval 7 = 0, 
" 

E(r, 0) = ,! @(k) ea-rdk, 
k 

and when r = 0, we have the frequency spectrum for the surface oscillatione 
measured at a point - 

E(O,7) = Ik@(k) e- dk = @(k)e--kdkdB, 

where the integration is taken in polar co-ordinates. But, since o2 = gk, 

2 w 3 b  

ga ' 
kdk = - 

so that 

where 

and k = [k[ = w2/g. The spectrum Y ( w )  is mwured 
conventional wave pole. 

(4.9) 

(4.10) 

fairly readily using a 

- 

In  a similar manner, we can construct an expression for the energy-flux 
vector F in terms of @(k). From (3.13), 

-~ 

C0 &dz, 
t 

F = -p  [ dudz = - p  
J --m J -m 

correct to second order. From (4.4), 

x exp&((k'-k).x- (w'-w)t)dkdk', 

where o' = (gk')* so that, in view of (4.6), 

(4.11) 

where c(k) = wk/k2 is the phase velocity of waves of wave-number k. This is 
a simple generalization of the statement that, in a simple sinusoidal wave, the 
energy flux is equal to the potential energy density moving at the phase velocity, 
or to the total energy moving at half the phase velocity (the group velocity). 
The expression (4.11) is correct to second order; the next approximation could 
be found by substituting the next-order solutions for $(x, 2, t )  into (3.13). 



On the dynumia of unsteady gravity wavea. Part 2 153 

5. Mean products of three first-order quantities 
A number of the higher order quantities, such as the difference (3.22) between 

the potential and kinetic energy densities, presented themselves as the average 
product of three first-order terms. One would expect, in view of the observed 
closeness to which the surface displacement distribution approaches the Gaussian 
form, that third-order correlations (i.e. dimensionless covariances) would be 
numerically small. However, we can show that they are small in an order of 
magnitude sense, or, more precisely, that in a homogeneous stationary wave 
field any mean triple product of Jirst-order t e r n  is of fourth (or higher) order. 

For the proof of this statement, we observe first that any first-order quantity 
can be represented (correct to this order) as a generalized Fourier integral in- 
volving A ( k )  multiplied by algebraic factors whose nature depends on the 
particular quantity concerned. The expression (4.4) for #(x, z, t)  is an illustration 
of this, and clearly #,(x, t ) ,  u&x, t ) ,  etc., are of the same form. 

Let fl(x, t ) ,  f2(x + r, t + 7 2 )  and f3(x + s, t +7,) represent three first-order 
quantities measured at positions x, x + r, x + s and times t ,  t + 7 2 ,  t + 7, respec- 
tively. Then the mean triple product can be represented, correct to the third 
order, as 

x exp -i{(kl  - k ,  - k, ) .  x - (ol -0, -0,) t }  

x expi{k2.r--W,7,}expi{k,.s -0,7,}dkldk,dk,, 

where K is an algebraic function and wi = (Ski))  for i = 1,2 ,3 .  The simplest 
argument is as fol1ows.t If the left-hand side of this expression is to be indepen- 
dent of position x and time origin t ,  then the only non-zero contributions to 
the integral can occur only when both 

ki-ka-k,  = 0, w ~ - w ~ - w ,  = 0. (5.1) 

From the second of these conditions, 

k f  = k j + k t ,  

or -- 2(k2k3)* , 1. - l+- 
ka + k3 

kl 
k2 + k3 

But from the first of the conditions (5.1), - k,, k,, k, form a closed triangle, so 
that k,/(k,+ k,) < 1, which is incompatible with (5.2) except for the degenerate 
case when either k, or k, vanishes. This contingency can be excluded since it 
would imply the existence of covariances of the kind above that were indepen- 
dent of r or 5. The conclusion is that there are no non-zero contributions to the 
integral, and that any triple covariance of this kind is zero to the third order. 

Two comments on this rather general result might be pertinent. The result 
depends crucially on the dispersive nature of the wave, where a wave-number k 
is associated with a unique frequency which depends on but is not proportional 
to k = Ik[. In  a non-dispersive wave system where 0 is proportional to k ,  the 

t A n  alternative but alightly longer procedure involvea inversion of this expreesion. 
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conditions (5.1) are satisfied by triads of parallel vectors. Also if the frequency 
ia not a unique function of scalar wave-number, as in the 8ewn.d approximation 
to a gravity-wave field, we do not have the simple separation (3.2) and the result 
fails. Secondly, it might be noted that the reasons for this result are precisely 
the same as those for the absence of any continuing energy transfer from one 
wave-number to another in second-order gravity wave theory (Phillips 1960a). 
The conditions required for such a transfer are equivalent to (5.1) which are 
incapable of satisfaction. 

An immediate consequence of this result is that the difference between the 
potential and kinetic energy density is of fourth order. Since T and V are them- 
selves second-order quantities, the fractional difference is of order (E)a since [m]a is our representative first-order quantity. The energy partition is thus 
very nearly equal; even in a well-developed sea where [(m]* is of order 0.16 
the energy densities are equal to within a few per cent. 

A second consequence is an interesting one that can be compared directly 
with observation, though it is not involved in the discussion of $3. According to 
the above result, F is of fourth order or smaller, whereaa c2 is clearly of second 
order. It follows that the skewness of the probability distribution of the surface 
displacement, namely 

is a firat-order dimensionless quantity, and so is of order [(w],. In  other words, 

- 
E"[Pl'l (5.3) 

- 
CS 

[OG [PI# (5.4) 

is of order unity or less. As [(m]* += 0, the skewness (5.3) tends to zero also, 
in accord with the well known property that in the limit of infinitesimal wave 
slopes, the surface displacement hrts a symmetric probability distribution. As the 
root mean square slope increases, so does the skewness, reflecting the tendency 
of the waves to form sharper crests and shallower troughs. A direct calculation, 
using the second-order terms, confirms that the quantity (5.4) is of order unity, 
although the resulting expression, involving ratios of integrals involving the 
spectrum Q(k) is too complicated to be of much value in a general case. A second 
direct calculation for a single train of finite amplitude waves shows that the 
quantity (5.4) is 3/8 plus a term of order (slope)e, in agreement with our order-of- 
magnitude result. 

The prediction that the quantity (5.4) is quite generally of order unity can be 
compared with some observations made by Kinsman (1960) on wind-generated 
waves in a branch of the Chesapeake Bay. He meaaured properties of the wavea 
set up by a steady wind blowing over a fixed fetch. The conditions were chosen 
so that the wave field was stationary in time and the rate of growth with in- 
creasing fetch waa slow, and so they approximated to the conditions envisaged 
in the theorem above. Kinsman meamred the skewness for each of 24 sets of 
observations, and the root mean square slope was calculated approximately 
from his measured spectra. Table 1 gives the results of these calculations, and 
it is evident that the quantity (5.4) is indeed of order unity or less. The sets 
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numbered between 81 and 88 gave exceptionally low (even negative) values for 
the skewness, but in no case is the ratio (5.4) of order larger than unity, and the 
variation h m  one observation to another is no more than is to be expected 
from the widely differing properties of the wave field generated on the Werent 
occasions. 

This work waa sponsored by the Office of Naval Research under contract 
Nonr 248(56). 

Observation 
number 

9 
10 
11 
12 
17 
18 

27 
28 
67 
68 
69 
70 

76 
70 
81 
82 
83 
84 

86 
86 
87 
88 
93 
94 

Skewneaa 
0.172 
0.143 
O.OQ0 
0.182 
0.176 
0.219 

0.168 
0-178 
0.082 
0-087 
0.067 
0.027 

0.101 
0.092 
0.029 
0.034 

- 0.002 
0.044 

- 0.006 
0.01 1 
0.006 

- 0.046 
0.144 
0.130 

TABLE 1 

Skewnesa -- 
C(W1’ 

2.3 
2.1 
1.4 
2.4 
2.1 
2.4 

2.1 
2.3 
1.1 
1.1 
1.0 
0.4 

1.6 
1.4 
0-4 
0.6 
0 
0.7 

- 0.1 
0.2 
0.1 

- 0.7 
2.1 
2.1 
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